文章编号:0253-2239(2001)09-1079-05

# 相位板衍射图样处理方法的研究

## 李 直 赵 洋 李达成

(清华大学精密仪器与机械学系 精密测试技术及仪器国家重点实验室,北京 100084)

摘要: 分析了准直激光束照明条件下,相位板中心偏离准直光束中心对衍射图样的影响,并给出了数值仿真结 果,提出了一种基于多层前馈神经网络的相位板衍射图样处理方法,相对于传统的最小二乘曲线拟合处理方法而 言,精度大为提高。该方法并能适用于包括无衍射光束等复杂图样的细分处理,从而为进一步提高大尺度准直精 度奠定了基础。

关键词: 准直技术;相位板;图像处理;衍射图样;神经网络中图分类号:0436.1 文献标识码:A

#### 1 引 言

高精度准直技术是大型工件几何量测量,包括 工件的形状与位置误差、几何参数等测量的基础。 在形形色色的准直方案中,激光光纤准直技术是一 项成熟而且应用较为广泛的准直技术,在其基础上 组建的测量系统多种多样。大型工件平行度垂直度 测量仪<sup>[1]</sup>即是典型一例:该仪器以激光光纤准直仪 提供的准直激光束为测量基线,配合回转轴系,旋转 其光轴与回转轴重合的五角棱镜,即可扫出互相平 行或垂直的基准平面,从而实现对大型工件的形位 误差测量。

早期的激光光纤准直技术,其准直基线是光斑 能量分布中心的连线,用位敏光电器件或 CCD 作为 探测器检测光强中心,即可同时实现二维测量。为 进一步提高准直精度,可在准直系统中引入波带片、 相位板、双缝等元件,以这些元件所产生的干涉或衍 射条纹的空间连线作为基准。相位板由于其制作简 单、使用方便而在实际测量系统中得到广泛应用。 随着 CCD 探测器在测量系统中的普及,相位板衍射 图样一般采用 CCD 探测,并经图像采集卡数字化后 传入微机,而后应用最小二乘曲线拟合法对其进行 细分,以提高分辨率。目前结合相位板的半导体激 光光纤准直系统的 3 米稳定性可达 2.29µm/3 h<sup>[2]</sup>。

但在实际应用中发现,当相位板中心与准直激 光的光强中心不重合时,测量系统的示值误差明显 以至于不能忽略。例如对前述大型工件平行度垂直 度测量仪,当基准准直光束与回转轴线平行但不重

收稿日期 2000-05-22; 收到修改稿日期 2000-08-02

合时,旋转五角棱镜,即会产生准直光束相对于相位 板中心有横向跳动的现象,此时测量系统显示出明 显测量误差。这一现象促使我们定量地研究了准直 激光照明条件下相位板横移对衍射图样的影响。结 果表明,传统的最小二乘曲线拟合细分法不适用于 这类衍射图样的细分。由此提出了基于神经网络的 相位板衍射图样处理方法。实验证明,本文提出的 方法较之传统的曲线拟合细分法,极大地提高了系 统的测量精度。

## 2 准直激光照明条件下相位板横向位 移对衍射图样的影响

单模光纤准直系统的出射光是振幅呈中心对称 的贝塞尔分布的平面波,其近场分布与高斯函数十 分相近。为方便分析,以下直接取准直激光为高斯 光束。设入射高斯光束的波前为

$$U(x, y) = A \exp \left(-\frac{x^2 + y^2}{\sigma^2}\right)$$
,

其中  $\sigma$  为光束的"  $1/e^2$  "半径,相位板的透射函数为  $T(x - \Delta_1, y - \Delta_2), \Delta_1, \Delta_2$  为相位板相对于高斯光 束的横向(x-y 面内)位移。则当光束透射相位板后, 其波前可由菲涅耳衍射公式得到<sup>[3]</sup>:

$$U(x,y) = \frac{\exp(ikz)}{i\lambda z} \times$$

$$\iint U(x_1,y_1)T(x_1 - \Delta_1,y_1 - \Delta_2) \times$$

$$\exp\left\{i\frac{k}{2z}[(x - x_1)^2 + (y - y_1)^2]\right\} \operatorname{d} x_1 \operatorname{d} y_1,$$

对应的光强分布为

(1)

则

式中

K

$$T(x',y') = \begin{cases} 1 & 0 < x' < \infty, & -\infty < y' < \infty, \\ \exp(-i\pi) & -\infty < x' < 0, & -\infty < y' < \infty. \end{cases}$$
(3)

$$U(x, y) = AC(y) \int [f(x_1, x, \Delta_1) - f(-x_1, x, \Delta_1)] dx_1, \qquad (4)$$

$$f(x_1 ; x ; \Delta_1) = \exp \left[ -\frac{(x_1 + \Delta_1)^2}{\sigma^2} \right] \exp \left[ i \frac{k}{2z} (x_1 + \Delta_1 - x)^2 \right]$$

由于我们事实上不关心 y 方向的衍射光强分 布,这里不再给出 C(y)的表达式。图 1 给出了  $y = y_0(|y_0| < \sigma)$ 处的光强分布,由图可见,由于  $|\Delta_1| > 0$ ,使得衍射图样不对称。



Fig.1 Intensity distribution curve of Gauss beam diffracted by phase plane for  $|\Delta_1| > 0$ 

下面进一步分析衍射图样主暗线  $x_0$  随  $\Delta_1$  的 变化情况。由(4)式 , $y = y_0$ , $x_0$ 不变 因此以下只考 察 y = 0处的衍射图样 ,并记  $u(x) = U(x \Omega)$ ,  $i(x) = I(x \Omega)$ 。由(4)式可见 ,当  $\sigma \rightarrow \infty$  时 ,

 $U(x,y) \rightarrow$ 

工旦右

AC(y) { *F*( $x = \Delta_1$ ) = *F*[-( $x = \Delta_1$ )] }, (5) *F*(·)为菲涅耳积分。从而 *I*( $\Delta_1$ , *y*)→ Q((5)式中常 数已合并入 *A*中] 这说明分析相位板的位移量  $\Delta_1$ 对衍射条纹的影响时需考虑准直激光束口径的作 用。为此 引入新变量

$$s = \Delta_1 / \sigma , \qquad (6)$$

 $x ; s , \sigma$  ]] d  $x_1$  , (7)

$$J = H$$

$$u(x; s, \sigma) =$$

$$A \int_{0}^{\infty} [\varphi(x_{1}, x; s, \sigma) - \varphi(-x_{1}, \sigma)] =$$

$$\exp\left[-\left(\frac{x_1}{\sigma^2}+s\right)\right]\exp\left[i\frac{k}{2z}(x_1+s\sigma-x^2)\right],$$

A 中合并了推导过程中得到的常数项。把(7)式代 入(2)式并求导,可得

$$\frac{\mathrm{d}i(s\ is\ \sigma)}{\mathrm{d}x} = 2\frac{\mathrm{d}|u(x\ is\ \sigma)|^2}{\mathrm{d}x}, \quad (8)$$

显然 ,令(8)式恒等于零 ,而直接求  $x_0$  的解析解是 困难的。因此 ,这里应用数值算法求得  $x_0$  的数值解 (以下仿真中取 z = 3.0 m)。图 2 给出了主暗线中心  $x_0$  相对于  $\Delta_1$  的偏差  $\delta x_0 = \Delta_1 - x_0$  随 ( $s \sigma$ )的变 化曲线。图 3 给出了  $|\delta x_0| \leq 1$ 条件下 ,s 的取值范围 (图中阴影部分)与  $\sigma$  的关系曲线。



Fig. 2 The relationship between  $\delta x_0$  and  $(s, \sigma)$ 



Fig.3 The proper s with σ for  $\delta |x_0| \leq 1 \mu m$ 由图 2 可见,在相同的 s 条件下  $\delta x_0$  随着准直 光束半径 σ 的增大而显著地减小。通常在大尺度准 直系统中,考虑到空气湍流的影响,一般取 σ 为  $4 \times 10^{-3} \text{ m} \sim 5 \times 10^{-3} \text{ m}^{[4]}$ ,因此当|s| < 0.5,即  $|\Delta_1| < 2.0 \times 10^{-3}$ 时, $|\delta x_0|$ 应小于 1  $\mu$ m。

以上分析虽然只针对一维相位板[由(3)式定 义 )衍射情况,但显然同样适用于二维情况。但是当 使用最小二乘曲线拟合细分法处理图样时, $\delta x_0$  远 大于 1  $\mu$ m 量级。

#### 3 相位板衍射图样的传统处理方法

相位板衍射图样经 CCD 采样后转化为一组离 散灰度数据。通常由于 CCD 的像素尺寸远大于 1 µm(一般为 10 µm 量级),为提高精度,常常希望 对其进行细分。灰度图像的细分可以有两种方法, 即插值法和曲线拟合<sup>[5]</sup>。然而由于噪声的存在,如 大尺度准直中常遇到的空气湍流的影响、CCD 的量 化噪声等,实际应用中一般选择曲线拟合方法进行 细分。

设在某时刻 CCD 采得一幅相位板的衍射图样, 得到主极小(暗线)附近(左右两峰之间)的一组灰度 数据<sup>[6]</sup>

$$\varphi(x) = \sum_{j=0}^{n} p_j x^j = \boldsymbol{P} \cdot \boldsymbol{\Phi}(x), \quad (9)$$

式中

 $P = [p_0 p_1 \dots p_m], \quad \Phi(x) = [1x \dots x^n],$ 则在最小二乘拟合优度条件下,有

$$P = Y \cdot B^{\dagger} \cdot (B \cdot B^{\dagger})^{-1} , \qquad (10)$$
  
式中

 $\boldsymbol{B} = [\boldsymbol{\Phi}(x_0) \boldsymbol{\Phi}(x_1) \dots \boldsymbol{\Phi}(x_m)].$ 

由于相位板衍射图样的主谷(主极小左右两峰 之间区域)开口随准直距离增加而增大,为避免 (10)式右端奇异,一般取 *n* = 2。此时经拟合得到的 主暗线的位置 *x*′<sub>0</sub>为:

$$x'_0 = -\frac{p_1}{p_2}.$$

图 4、图 5 给出了在 n = 4 时,应用最小二乘曲 线拟合方法细分 CCD 采得相位板衍射图样的仿真 结果,其中图 4 给出了应用最小二乘曲线拟合法计 算得到的暗线中心  $x'_0$ ,图 5 给出了对应的误差  $\delta x'_0$  $= x'_0 - x_0$ 。由图可见,随 |s| 增大,细分误差  $|\delta x'_0|$  增大。这说明随 |s| 增加,主谷内的图像已不 适合用如(9) 式所示的线性模型来描述。为此本文 提出了基于神经网络的相位板衍射图样处理方法。



Fig. 4  $x_0$  predicted by polynomial curve fitting method



Fig. 5  $x_0$  predicted error by polynomial curve fitting method

## 4 基于神经网络的相位板衍射图样处 理方法

人工神经网络方法由于其所具有的自适应学 习、万能逼近和并行处理等优越特性,很适合求解复 杂非线性函数逼近问题,此外,它还具有很强的容错 性和鲁棒性,能够进行联想、综合和推广<sup>[7]</sup>。

如前所述,随|s|增加,衍射图样主暗线附近图 像的非线性程度增加,而且由(7)式可知,i(x)的表 达式复杂,难于将其转化为线性模型以利于最小二 乘曲线拟合法处理。但由图 1 可见,尽管不能给出 (4)式及(8)式的解析解,u(x)及i(x)显然连续可 导。由 Kolmogorov 定理<sup>[7]</sup>,对任一连续函数 $f: U^n$ →  $R^m$ ,f(x) = Y,f 可以精确地用一个三层前向网 络实现<sup>[7]</sup>。据此,构造具有单隐层的前向神经网络

*y* = *NN*(*x*,ν,*w*), (11) 来逼近 (*x*),其中 ν、*w* 为网络权值。该网络的隐层 神经元输出为

$$h_j = o(\mathbf{v}_j^{\mathrm{t}} \cdot \mathbf{l}), \qquad (12)$$

其中, $d(\cdot)$ 为 sifmoid 函数, $v_j = [v_{j,0} \ v_{j,1}]$ ,  $l = [1 \ x]$ ;输出层神经元输出为

$$y = w^{t} \cdot h , \qquad (13)$$



网络学习算法采用 Levenberg-Marquardt 算法<sup>[7]</sup>,L-M 算法是梯度下降法与高斯-牛顿法的结合 既有高斯-牛顿法的局部收敛性,又有梯度法的 全局特性。考虑到前向神经网络的学习理论已经十 分成熟,这里不再详细介绍。

为求主暗线位置,对(11)式求导,有

$$\frac{dy}{dx} = \sum_{i=1}^{n_h} w_i o(1 + o) v_{j,1}.$$
 (14)

令(14)式恒等于 0 成用牛顿迭代法求解 即可得到 主暗线位置  $x'_{0}$ 。图 6 给出了应用这种方法细分 CCD 采得相位板衍射图样的仿真结果  $x'_{0}$ ,及其误 差  $\delta x_{0} = x'_{0} - x_{0}$ 。由图可见 std( $\delta x'_{0}$ ) < 0.32  $\mu$ m。



Fig.6 (a)  $x_0$  predicted by neural network ;(b)  $x_0$  predicted error by neural network

### 5 实验及结论

为充分说明问题,在如图 7 所示的实验系统中, 半导体激光器发出的激光经光纤准直系统准直后, 其  $1/e^2$  半径为 0.75 mm,相位板垂直于光束传播方 向发生位移  $\Delta_1$ ,CCD 接收衍射图样,经图像采集卡 送入计算机内进行处理。为减小空气扰动对测量结 果的影响,取 L = 400 mm。图 8 给出分别采用传统





最小二乘曲线拟合法和基于神经网络的衍射图样细 分法处理结果:其中图 & a)绘出了应用两种方法测 得的相位板位移量 图中横坐标为测点序号 *i*,在相 邻测点相位板发生位移 50  $\mu$ m,纵坐标为分别采用 前述两种方法计算得到的相位板衍射图样主暗线在 CCD 上的位置  $x_0$ ;图 & b)给出了这两种方法分别 测得的  $x_0 - \Delta_1$ ,其中横坐标为测点序号 *i*,纵坐标 为  $x_{0,j} - \Delta_{1,i} - x_{0,0}$ 。由图 8 可见,当相位板中心处 于准直激光束中心附近  $|s| \rightarrow 0$ ,如图 8 (a)中测点 *i* = 11 附近 ]时,两种方法的测量结果比较接近,而当 相位板远离准直激光束中心 $|s| \rightarrow 1$ 时,应用传统曲 线拟合方法得到的测量结果与神经网络方法有较大 偏差,达 65.4  $\mu$ m(在测点 *i* = 0 处)。由引可知,采 用前面所介绍的基于神经网络的衍射图样细分法,



Fig.8 (a)  $x_0$  measured by two methods ;(b)( $x_0 - \Delta_1$ ) measured by two methods

较之传统细分方法 较大地提高了系统的准直精度。

近年来,无衍射光束开始在实际工程项目中投入使用<sup>[9]</sup>。较之传统衍射条纹准直技术,无衍射光 束由于其光斑图样能够在较长距离内保持不变而具 有较高的潜在准直精度。但是截至目前,可实际应 用的无衍射光束一般为零阶/准零阶贝塞尔函数光 束,其波前形状复杂。根据经验,为达到较高的准直 精度,一般应避免直接采用光束的光强中心峰值作 为准直基准,而采用光斑图样的暗(环)线作为准直 基准。此时,考虑到神经网络的特点,模型(11)式具 有普适性,本文所提出的基于神经网络的衍射图样 细分法将更能体现出优越性。

#### 参考文献

[1] 曹 芒 李达成,王 佳等.采用激光扫描与 CCD 探测 系统的大型工件垂直度、平行度测量仪.计量学报, 1995, 16(1) 26~30

- [2] 郝 群.激光准直和 CCD 测量技术在大型尺寸形位误 差测量中的应用研究.[博士学位论文].北京:清华大 学精仪系,1997
- [3] Goodman J W. Introduction to Fourier Optics. San Francisco: McGraw-Hill, 1968
- [4]曾理江. 自适应激光准直方法和实验研究. [博士学位 论文]. 北京:清华大学精仪系,1989
- [5]关 治 陈景良. 数值计算方法. 北京:清华大学出版 社,1990
- [6] Castleman K R. Digital Image Processing. Englewood Cliffs, N. J. Prentice Hall, 1996
- [7]赵振宁,徐用懋.模糊理论和神经网络的基础应用.北 京:清华大学出版社和南宁:广西科学技术出版社, 1996
- [8]司 捷,周贵安,李 函等.基于梯度监督学习的理论 与应用(1)——基本算法.清华大学学报,1997,37(7): 71~73
- [9] 王 鹏 徐毓光,余勤跃.圆屏(球)和圆环菲涅耳衍射 的解析表达式.光学学报,2000,20(3)351~356

#### Image Processing for Pattern Diffracted by Phase Plane

Li Zhi Zhao Yang Li Dacheng

( State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084) (Received 22 May 2000; revised 2 August 2000)

**Abstract**: The effect of the deviation between the center of collimated laser beam and the center of the phase plane on the diffraction pattern is investigated and simulated. A novel diffraction pattern processing method based on multi-layer feedforward neural networks is proposed, which is proved to be better than the conventional method based on the least-squares curve fitting. Moreover, the method proposed has the potentiality to be used for processing such complicated image as diffraction free beam with high precision.

**Key words** : collimation technique ; phase plane ; image processing ; diffraction pattern ; neural networks